博客主页 所有文章 标签 关于我
img

suifeng

计算数学 / 机器学习

何晓峰

个人站

欢迎来到我的个人站~


  • 博客主页
  • 所有文章
  • 标签
  • 关于我
  1. Eckart-Young theorem

    For a matrix $A \in \mathbb{R}^{m \times n}$, it must have an SVD decomposition $A=U \Sigma V^{T}$ with singular values $\sigma_ {1} \geq \sigma_ {2} \geq \ldots \geq \sigma_ {p} \geq 0$ and $p=\min {m, n}$ . Using $\left|U^{T} A V\right|=|\Sigma|...…

    2021-09-03
    learning
    阅读全文 »

  2. Singular Value Decomposition (SVD)

    Singular Value Decomposition (SVD) is the most important decomposition method in linear algebra and has a deep connection with Principle Component Analysis (PCA) in machine learning. SVD says any matrix $A \in \mathbb{R}^{m \times n}$ of rank $r$ ...…

    2021-09-01
    learning
    阅读全文 »

  3. DistMesh 使用教程

    1、主要函数 函数 distmesh2d( )DISTMESH2D 2-D Mesh Generator using Distance Functions.[P,T]=DISTMESH2D(FD,FH,H0,BBOX,PFIX,FPARAMS)% P: Node positions (Nx2), 网格点的x,y坐标% T: Triangle indices (NTx3), 三角形单元的三个顶点索引% FD: Di...…

    2021-08-25
    software
    阅读全文 »

  4. Gradient,Divergence and Curl

    1、哈密尔顿算子: $\nabla$ -nabla在介绍梯度等概念之前,首先引入CFD非常常见的运算符之一: $\nabla$, 它是某一物理量在三个坐标方向的偏导数的矢量和, 定义如下:\[\nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}\]2、梯度(Gradient)当 $\nabla$ 作...…

    2021-08-12
    learning
    阅读全文 »

  5. Model reduction techniques for fast blood flow simulation

    AbstractIn this paper, we propose a new model reduction technique aimed at real-time blood flow simulations on a given family of geometrical shapes of arterial vessels. Our approach is based on the combination of a low-dimensional shape parametriz...…

    2021-07-13
    literature reading
    阅读全文 »

  6. Maxwell方程的DG算法数值实现

    1. 原理简介一维Maxwell方程组形式如下\[\left\{ \begin{aligned}\varepsilon(x) \frac{\partial E}{\partial t}=-\frac{\partial H}{\partial x}\\ \mu(x) \frac{\partial H}{\partial t}=-\frac{\partial E}{\partial x}\end{aligned}\right. \label{eq1} \tag{1}\]其中 $(E,H)$ 分...…

    2021-07-01
    algorithm
    阅读全文 »

  7. Numerical linear algebra

    1. Gram-Schmidt正交化的修正策略(标准 Gram-Schmidt 正交化) 给定 $n \times m(m \leqslant$$n)$ 阶列满秩矩阵 $\boldsymbol{X}=\left[\boldsymbol{x}_ {1}, \boldsymbol{x}_ {2}, \cdots, \boldsymbol{x}_ {m}\right]$, 本算法产 生 $n \times m$ 阶正交矩阵 $\boldsymbol{Q}=\left[\boldsymbol{q}...…

    2021-06-25
    learning
    阅读全文 »

  8. Transfinite maps

    AbstractWe present a method to generate a non-affine transfinite map from a given reference domain to a family of deformed domains. The map is a generalization of the Gordon–Hall transfinite interpolation approach. It is defined globally over the ...…

    2021-06-20
    literature reading
    阅读全文 »

  9. Parametrized PDEs

    1.Parametrized partial differential equations notation meaning $\Omega$ $\Omega \subset \mathbb{R}^{2}$, a fixed, parameter-independent domain $\widetilde{\Omega}$ $\widetilde{\Omega}=\wideti...…

    2021-06-20
    literature reading
    阅读全文 »


1 / 1
  • RSS

Copyright © 何晓峰 2021 Theme by leopardpan |

本站总访问量 次